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a b s t r a c t

A parameter space is proposed for unifying the theories of two-dimensional strain analysis, where strain
markers are approximated by ellipses with a prescribed area. It is shown that the theories are unified by
hyperbolic geometry, the oldest and simple non-Euclidean geometry. The hyperboloid model of the
geometry is used for this purpose. Ellipses normalized by their areas are represented by points on the
unit hyperboloid, the curved surface in a non-Euclidean space. Dissimilarity between ellipses is defined
by the distance between the points that represent the ellipses. The merit of introducing the geometry
comes from the fact that this distance equals the doubled natural strain needed to transform one ellipse
to another. Thus, the introduction is natural and convenient for strain and error analyses. Equal-area and
gnomonic projections of the hyperboloid are introduced for the Rf/f and kinematic vorticity analyses,
respectively. In our formulation, the strain ellipse optimal for a set of Rf/f data is obtained as the centroid
of the points corresponding to the data on the hyperboloid, and the dispersion of the points shows the
uncertainty of the optimal strain. By means of a bootstrap method, the confidence region of the strain is
drawn upon the surface, and equal-area projection from the surface to a Euclidean plane shows the
dispersion of the points and the size of the confidence region. In addition, our formulation provides
a new graphical technique for kinematic vorticity analysis using the gnomonic projection. The technique
yields the optimal kinematic vorticity number with its uncertainty.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Strain analysis is an essential technique for complete under-
standing of the finite deformations of the lithosphere. Various
methods have been developed to evaluate strain or deformation of
rocks (e.g., Haughton, 1856; Cloos, 1947; Flinn, 1956; Wellman,
1962; Ramsay, 1967; Hossack, 1968; Ramsay and Huber, 1983;
Passchier and Trouw, 2005). Their theories are based on continuum
mechanics, but are formed ad hoc to deal with specific issues such
as the determination of strain from Rf/f data (Ramsay, 1967;
Dunnet, 1969). The present paper aims at presenting a common
basis for formulating the theories of two-dimensional strain anal-
ysis that use ellipses for approximating the shapes of strain markers
in deformed rocks.

This work was triggered when I became aware of the equivalence
of an equation of two-dimensional strain analysis by Dunnet (1969)
with a formula of hyperbolic geometry, the non-Euclidean geometry
found by Lobachevskiǐ, Bolyai and Gauss in the early 19th Century
(Faber, 1983). This paper demonstrates that the geometry allows us
not only to reformulate theories of two-dimensional strain analysis
ll rights reserved.
but also to establish a basis for estimating the optimal strain and its
error by means of formal statistical methodology.

This paper is organized as follows. Important quantities and
symbols used in this paper are introduced in Section 2. Section 3
introduces the connection between two-dimensional deformation
and hyperbolic geometry, which has alternative formulations.
Among them, we adopt the formulation called the hyperboloid
model (Section 4). The utility of the model for two-dimensional
analysis is explained in Section 5. That is, the model provides the
common basis for the theories of the analysis, and leads to new
graphical methods. We take Rf/f strain analysis, center-to-center
strain analysis and kinematic vorticity analysis as examples. Two
different plots, i.e., equal-area and gnomonic nets, for shape fabric
are proposed in Section 4 and used in Section 5.

In this paper, it is assumed that all the grains in a rock suffered
a homogeneous deformation or rotations by spatially steady flow. It
is beyond the scope of this paper to deal with the cases to which the
assumption does not apply.
2. Notation

Let us, first, define some important symbols for dealing with
ellipses. As it is not easy to estimate volume changes accompanied
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Table 1
List of important symbols

bb Centroid of bð1Þ;.;bðmÞ Section 5.1.2
b(i) Hyperbolic vector mean of the ith bootstrap sample Section 5.1.2
C Point on H2 with the cartesian coordinates (1, 0, 0) Fig. 4
vD Circle with the radius 1 on the plane x0¼1 and centered by C Fig. 4
H1 One-dimensional hyperbolic space, a special geodesic on H2 Fig. 4
H2 Two-dimensional hyperbolic space, the unit hyperboloid Fig. 4
i, f, s Subscripts for quantities of pre- and post-strain and strain

ellipses, respectively
Section 2

[ Moving radius of ellipse Fig. 1
m Number of bootstrap sample sets Section 5.1.2
R Aspect ratio of ellipse Fig. 1
v Pole vector for defining a geodesic on H2 Section 4.3
Wk Kinematic vorticity number Section 4.3
Wm Mean kinematic vorticity number Section 5.2
x Position vector or point on H2 Section 4.1,

Eq. (9)bxs Hyperbolic vector mean Eq. (20)
x0, x1,

x2

Cartesian coordinates Fig. 4

(z, q) Radial and tangential components on the azimuthal
projection of H2

Section 4.4

l Resultant vector Eq. (21)
f Major-axis orientation of ellipse Fig. 1
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by tectonic deformations from strain markers, the changes are
ignored throughout of this paper. And, every ellipse is assumed to
have an area of p, which is equal to that of a unit circle. As a result,
we deal only with the aspect ratios and major-axis orientations of
ellipses. The orientations are measured from a reference line that is
taken arbitrarily on the plane on which strain markers are
observed. Let f be the major-axis orientation of an ellipse (Fig. 1).
Since a strain ellipse with the aspect ratio R results from the prin-
cipal elongations R1/2 and R�1/2, log R1/2 equals the logarithmic
strain and r¼ log R is the logarithmic quadratic strain or doubled
natural strain. The double angle j¼ 2f is theoretically more useful
than f. All ellipses are normalized by their area to have the value of
p. Accordingly, unstrained state is represented by the unit circle.

Attributes of pre- and post-strain ellipses and strain ellipse are
distinguished by the subscripts, ‘i’, ‘f’ and ‘s,’ respectively. For
example, js and jf denote the doubled major-axis orientations of
strain ellipse and final ellipse, respectively. fs indicates the
maximum stretching orientation. Accordingly, the logarithmic
quadratic strain of pre-, post-strain, and strain ellipses are referred
to as ri, rf and rs, respectively. Table 1 shows the symbols for
important quantities.
4 Angular coordinate used with [ Fig. 1
r Logarithm of R, logarithm of quadratic strain Section 2
r, j, x0 Cylindrical coordinates Fig. 4
9 Hyperbolic distance from the point C on H2 Section 4.2
� Hyperbolic inner product Eq. (4)
kk Hyperbolic vector length Eq. (5)

B

3. Rationale for introducing hyperbolic geometry

Equations introduced by Dunnet (1969, Eq. 28) and Lisle (1985,
Eq. A1.1) clearly show the connection between strain analysis and
hyperbolic geometry. Dunnet derived the equation

cosh ri ¼ cosh rf cosh rs � sinh rf sinh rs cosjf (1)

to relate the pre- and post-strain shapes of an elliptical strain
marker to the strain ellipse, where the reference orientation is
assumed to be parallel to the maximum elongation, i.e.,
2fs¼ js¼ 0. In fact, Eq. (1) is termed the law of cosines in hyper-
bolic trigonometry, which relates the sides and interior angles of
a triangle (Fig. 2) in a hyperbolic space (Ratcliffe, 2006). On the
other hand Lisle (1985) shows an equation for the change in prin-
cipal axes of an ellipse,

sinh ri sinðp� jiÞ ¼ sinh rf sinjf (2)

This equation relates the sides to their opposite interior angles of
the triangle (Fig. 2), and is called the law of sines in hyperbolic
trigonometry.

Hyperbolic geometry gives a useful point of view for statistical
processing of two-dimensional strains, because the geometry
allows us to evaluate dissimilarity between strain ellipses. Once
dissimilarity or distance between data is properly defined, data
analysis can take advantage of various statistical techniques (e.g.,
Aitchison, 1986; Small, 1996; Duda et al., 2001; Egozcue et al., 2003;
Sato and Yamaji, 2006; Yamaji and Sato, 2006). To illustrate this,
suppose that we obtained many estimates of the strain ellipse from
the assemblage of strain makers through bootstrap or some other
Fig. 1. Ellipse with aspect ratio R¼ a/b and major-axis orientation 4. The polar coor-
dinates [ and f denote a point on the ellipse.
resampling techniques. Then, how can we quantify the variation of
the ellipses to estimate the uncertainty of the mean strain ellipse?
Definition of the spread requires a measure, i.e., distance or
dissimilarity between ellipses. If ellipses have large variations in
their R and f values, the spread is judged to be large and the mean
has a large uncertainty. So, our question becomes what is the
appropriate definition of a parameter space, in which a point has
a one-to-one correspondence to the paired data R and j. In addi-
tion, the space requires an essential attribute: distance in the space
should be equal to a strain measure needed to transform one ellipse
to another. The conventional Rf/f plot is not appropriate for this
purpose. Open circles in Fig. 3 indicate two ellipses with the same
aspect ratio and different orientations. Diamonds in this figure
denote ellipses with a low aspect ratio. Distance between the circles
is the same with that between the diamonds on this plot. However,
the fat ellipses are much more alike to each other than the thin
ellipses. Difference in f is more significant for thin ellipses than for
fat ones, but those distances are the same on this plot. It is unclear
A

C

Fig. 2. Schematic illustration showing a hyperbolic triangle ABC, the vertices of which
represent the ellipses A, B and C in physical space. Sides of the triangle are geodesics,
the shortest paths connecting the vertices. The symbols rf, ri and rs denote lengths of
the sides.



φ

Fig. 3. Conventional R/4 plot. Open circles and diamonds denote the points on the plot
corresponding to black ellipses. R and 4 are the aspect ratio and major-axis orientation
of an ellipse, respectively.

Fig. 4. The hyperboloid H2 defined by Eq. (3) for visualizing hyperbolic geometry.
Cartesian and cylindrical coordinates, O-x0x1x2 and O-rjx0, have the origin O in
common. Intersection of H2 and the x0-axis defines the point C, which has the
Cartesian coordinates (1, 0, 0). This point represents the unit circle in the physical
space, and other points on H2 represent different ellipses with different combinations
of R- and 4-values. Thick line H1 is the geodesic defined by the intersection of H2 and
the x0x1-plane. Dotted line vD indicates the circle x1

2þ x2
2¼1 in the plane x0¼1. Dashed

lines show the cone that has its apex at the origin and includes vD. The hyperboloid
asymptotically approaches the cone.
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whether the dissimilarity between the thin ellipses is larger than
that between the elongate and circular ones with the same
orientations.

The hyperbolic triangle in Fig. 2 not only suggests the connec-
tion between strain analysis and hyperbolic geometry, but also
indicates that the hyperbolic space fills the statistical necessity.
That is, the distances ri, rf and rs equal the logarithmic quadratic
strains needed to transform one ellipse to another denoted by the
vertices of the triangle.
4. Hyperboloid model

Hyperbolic space is an abstract non-Euclidean space, and there
are a few methods of visualizing the space. However, all the
methods have distortion like cartographic projections of the globe.
Among them we use the curved surface, called the unit hyperbo-
loid, for the ease of statistical processing. The hyperboloid gives
a useful visual expression of hyperbolic space at the cost of loosing
the important attribute of this space, i.e., the constant curvature of
�1. The content of the next two subsections are found in Reynolds
(1993), Nakaoka (1993) and Ratcliffe (2006). The notation of this
article basically follows that of Reynolds (1993).
4.1. The unit hyperboloid

The Cartesian coordinates O-x0x1x2 is used throughout of this
paper, where O is the coordinate origin. Then, the unit hyperboloid
is defined by the equation,

�x2
0 þ x2

1 þ x2
2 ¼ �1 (3)

In this article, only the upper half space x0� 0 is considered. The
symbol H2 refers to this surface (Fig. 4). We use the cylindrical
coordinates O-rjx0 as well, where r is the radial coordinate, j is the
angular coordinate, and x0 is the high along the cylinder axis. The
Cartesian and cylindrical coordinates have the origin in common.
H2 has axial symmetry about the x0-axis, and has a round base at
the point C with the Cartesian coordinates (1, 0, 0). It follows that H2

has the expression x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
, and has hyperbolic profiles. H1 is

the hyperbola defined by the intersection of H2 and the x0x1-plane.
Instead of the familiar definition of vector inner product in the

Euclidean space, the inner product is defined as

a+b ¼ �a0b0 þ a1b1 þ a2b2 (4)

which is called hyperbolic inner product. Position vectors are
defined as usual: their initial point is fixed at the origin O.
Accordingly, they are identified with their end points, and points
are denoted by position vectors. In terms of a position vector x, the
cone x0¼ r illustrated in Fig. 4 is written as x + x¼ 0. It is known
that the inner product of the position vectors a and b with the
endpoints above the cone is non-positive in sign, a + b� 0 (Rat-
cliffe, 2006, p. 56).
4.2. Distances, geodesics and translations on H2

In terms of a position vector x, H2 is expressed as x + x¼�1.
Compared to the equation of the unit sphere, x $ x¼ 1 and
considering the curvature �1 over the entire surface, H2 is some-
times called a pseudosphere with the radius of

ffiffiffiffiffiffiffi
�1
p

(Vilenkin,
1968). Accordingly, spherical geometry and spherical statistics are
useful guides for our study.

Given two points on H2, the geodesic between the points is the
shortest path on H2. This is analogous to a great circle, which is the
intersection of a plane through the origin and the sphere. Likewise,
a geodesic on H2 is defined by the intersection of a plane through
the origin and H2. H1 is a geodesic through the point C, and is
defined by the intersection of the x0x1-plane and H2 (Fig. 4).
Accordingly, a geodesic can be identified with the vector v
perpendicular to the intersecting plane.

Length of the vector x is given by

kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�x+x
p

(5)

Due to the minus sign, the right-hand side of this equation is
real for position vectors if their end points exist in the region
above the cone. Distances on H2 are measured along geodesics.
That is, the distance between the points a and b upon H2 is
calculated by

dH ¼ cosh�1ð�a+bÞ (6)

analogous to the great-circle distance on the unit sphere expressed
as cos�1(a $ b). It follows from Eqs. (4) and (6) that cosh�1 x0 is the
distance between C and x¼ (x0, x1, x2)T on H2. Let us use the symbol
9 to refer to this distance. Then, we have
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x0 ¼ cosh 9 ¼ 1
2

�
Rþ 1

R

�
(7)

H2 can be written in the cylindrical coordinates as x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
.

Combining this and Eq. (7) we obtain

r ¼ sinh 9 ¼ 1
2

�
R� 1

R

�
: (8)

Therefore, C-9j can be used as a coordinate system on H2 with the
origin at C (Fig. 4). This is sometimes called hyperbolic spherical
coordinates (Barndorff-Nielsen, 1987). A point on H2 can be
expressed as

xð9;jÞ ¼ ðcosh 9; sinh 9 cosj; sinh 9 sinjÞT (9)

Just as translation or movement of a rigid body on the unit
sphere is described by a Euler rotation which is further denoted by
an orthogonal matrix, translation on H2 is expressed by a hyper-
bolic orthogonal matrix with the determinant 1. If the translation is
along the geodesic that is defined by a plane containing the x0-axis,
the matrix has the form

Q ð9;jÞ ¼

0
@1 0 0

0 cosj �sinj
0 sinj cosj

1
A
0
@ coshr sinhr 0

sinhr coshr 0
0 0 1

1
A

�

0
@1 0 0

0 cosj sinj
0 �sinj cosj

1
A (10)

where j denotes the direction of translation.
Translation does not change distances between points so

that any figure defined by a set of points does not change its
shape and size on H2. Consider the congruent triangles ABC
and A0B0C0 in Fig. 5; A0 coincides with C and sides AC and A0C0

are on H1. They have the sizes a, b and c, and the opposite
interior angles a, b and g. The translation along H1 from A0B0C0

to ABC is denoted by Q(–b, 0). The apices B and B0 are denoted
by the vectors xðBÞ ¼ ðcosh a; sinh a cosg; sinh a singÞT and
xðB0Þ ¼ ðcosh c; sinh c cosðp� aÞ; sinh c sinðp� aÞÞT. These vectors
are related through an orthogonal matrix as0
@ cosh c

sinh c cosðp� aÞ
sinh c sinðp� aÞ

1
A ¼

0
@ cosh b �sinh b 0
�sinh b cosh b 0

0 0 1

1
A

�

0
@ cosh a

sinh a cosg
sinh a sing

1
A:

Extracting the first and third rows of the both sides of this equation,
we have
Fig. 5. Congruent triangles ABC and A0B0C0 on H2. The triangles have the apices C and
A0 at the same point. C is the point where the x0-axis meets H2 (Fig. 4). Sides of the
triangles have the lengths a, b and c. The side b is on H1.
cosh c ¼ cosh b cosh a�sinh b sinh a cosg (11)

and

sinh c sinðp�aÞ ¼ sinh a sing (12)

These are the cosine and sine laws of hyperbolic trigonometry.
Replacing a, b, c, a and g by rf, rs, ri, ji and jf, respectively, Eqs. (11)
and (12) becomes Eqs. (1) and (2). Consequently, formulas of strain
analysis correspond to those of hyperbolic trigonometry.

The above correspondence demonstrates that the deformation
of elliptical objects in the physical space is denoted by a translation
of this kind on H2. In addition, 9 equals r, meaning that the strain
needed to make one ellipse to another equals the geodesic distance
between the points representing the ellipses. Consequently, H2 has
ideal properties as the parameter space for dealing with Rf/f data.

As a result, deformation in the physical space is simply denoted
by the linear transformation of hyperbolic vectors such that

x
�

rf ;jf

�
¼ Q ðrs;jsÞxðri;jiÞ (13)

where x and Q has been defined in Eqs. (9) and (10). As the strain
ellipse is represented by a point xs on H2, Eq. (13) is rewritten as

xf ¼ Q ðxsÞxi (14)

Eq. (13) is simplified to

x
�

rf ;jf

�
¼

0
@ cosh ri cosh rs

cosh ri sinh rs
sinh rs

1
A (15)

for the translation along H1 of the points with the initial hyperbolic
spherical coordinates (ri, p/2). Eq. (15) denotes the curve with the
variable rs that keeps the constant distance ri from H1, analogous to
the relationship of a small and great circle on a sphere.

4.3. General shear

Various deformation types in the physical space are distin-
guished by the kinematic vorticity number Wk (e.g., Ramberg, 1975;
De Paor, 1993; Passchier and Trouw, 2005), which has values 0, 1
and >1 for pure, simple and super shear, respectively. Wk is not
defined in terms of deformations, but of the velocity field resulting
in those deformations. That is, Wk is the ratio of asymmetric and
symmetric parts of velocity gradient tensor L (Truesdell, 1954),
which is related to the deformation gradient tensor F and its
material derivative _F via the equation L ¼ _FF�1 (Chadwick, 1999, p.
65). L and F are different quantities even for a steady flow. However,
Wk has a qualitative relationship with the hyperboloid model as
follows.

In analogy with small circles on a sphere, there are three kinds
of curves on H2 (Reynolds, 1993), each of which corresponds to
a type of deformation in the physical space. The curves are defined
by the intersection of planes and H2 so that a point x on such a curve
satisfies the linear equation

x+v ¼ �k (16)

Those curves are termed ‘cycles’ in hyperbolic geometry. The vector
v is called the pole of the plane, indicating the attitude of the plane
and k indicates the position of the plane. Planes with k¼ 0 include
the origin O so that the curves defined by those planes are
geodesics.

4.3.1. Pure shear
Pure shear has been explained in the previous subsection: such

a deformation carries points on H2 along a geodesic on the planes



O
x1

x2

x0

H2

1
 dire

cti
on

2  direction

Fig. 7. Geodesic (thick line) on H2 lying on a plane through the origin. The plane has
the pole vector v between the x1x2-plane and the cone in Fig. 4. White line is the
orthogonal projection of the geodesic onto this plane.
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parallel to the x0-axis or along a line that keeps a constant hyper-
bolic distance from such a geodesic (Fig. 6). The curve shown by Eq.
(15) is the one along H1, and is regarded as the ‘strain path’ of an
initial ellipse represented by a point on the curve for the growing
strain increasing with rs. Those planes have a common pole vector v
lying on the x1x2-plane. In this case, the pole vector satisfies
v $ v> 0 (Reynolds, 1993). And, the Wk value is 0, equivalent to the
ratio v0/vr of the cylindrical components of the vector v.

4.3.2. General shear between pure and simple
General shear between pure and simple has strain paths on the

intersection of H2 and the plane defined by the pole vectors
between the x1x2-plane and the cone in Fig. 4. This case is
considered in detail for kinematic vorticity analysis in Section 5.2.
The geodetic corresponding to this vector is asymptote to the cone
in the two different directions j1 and j2 in Fig. 7, corresponding to
the fact that the straining and destraining of an ellipse leads to
ellipses with different stretching orientations in physical space. In
this case, we have 0�Wk� 1, concordant to the range of the ratio
v0/vr.

Regarding kinematic vorticity analysis (Section 5.2), the fabric
attractor (flow plane) is represented by a geodetic on H2, and the
ratio v0/vr of the geodetic is exactly equal to the mean kinematic
vorticity number (Appendix B).

4.3.3. Simple shear
The strain path of simple shear is represented by a ‘horocycle’ on

H2, i.e., a curve lying on a plane with v tangent to the cone in Fig. 4.
This vector satisfies v $ v¼ 0. As a result, the curves are parabolic on
H2 (Fig. 8). A horocycle is asymptote to the same point at infinity,
corresponding to the fact that infinite simple shear results in an
infinitely long and thin ellipse irrespective of the sense of shear.
Horocycles in Fig. 8 are asymptote to H1 in the þx1 direction. In this
case, the value of Wk equals 1. This is equivalent to the ratio of the
cylindrical coordinates of the vector v0/vr.

4.3.4. Super shear
Super shear or super simple shear is characterized by Wk values

greater than 1, and is the behavior of fluid inclusions immersed in
Fig. 6. Solid lines showing the curves on H2 corresponding to the strain paths of
coaxial strain. White lines on the x1x2-plane are the orthogonal projections of the
curves.
a fluid with different viscosity subject to shearing (e.g., De Paor,
1983; Mulchrone and Walsh, 2006). Those inclusions change their
aspect ratios and orientations synchronously. Such a behavior is
illustrated by a circular orbit on H2 (Fig. 9). The orbit lies on a plane
with v included by the cone. In this case, the pole vector satisfies
v $ v< 0 (Reynolds, 1993). The range of Wk is concordant with that
of the ratio v0/vr.

4.3.5. Rigid-body rotation
Rigid-body rotations in the physical space are represented by

the circular orbits on the planes perpendicular to the x0-axis, i.e.,
v¼ 1. Rigid-body rotations has the value Wk¼N, concordant with
v0/vr¼N.

4.4. Cartography

Projections from H2 onto a Euclidean plane are convenient tools
for investigating spatial data on H2, although the projections
Fig. 8. The horocycles (thin lines) on H2 that are defined by the intersections of H2 and
the planes with the pole vector v tangent to the cone in Fig. 4. Those curves represent
strain paths for simple shear in the reference orientation. White lines on the x1x2-plane
show the orthogonal projections of the horocycles.



Fig. 10. Section of H2 through the x0-axis for illustrating projections from H2 onto the
Euclidean x1x2-plane. The hyperbolic distance of P from C is r, and P0 is the midpoint.
Q0 is the orthogonal projection of P0, and is the midpoint of the segment between O and
QA. The points QG, QD, QO and QA are the gnomonic, equidistant, orthographic and
equal-area projection of P, respectively. Dashed lines indicate the cone in Fig. 4.
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inevitably have distortion like those from the globe onto a plane.
Consider the mapping from a point with polar coordinates (r, j) on
H2 to the polar coordinates (z, q) on the Euclidean plane (Fig. 10).
We consider only azimuthal projections, meaning that q¼ j. All the
projections in this subsection preserve azimuths from C to any
point on H2, but the conventional Rf/f plot (Fig. 3) does not.

4.4.1. Equal-area projection
The projection denoted by the equation

z ¼ 2sinh ðr=2Þ ¼ R1=2�R�1=2 (17)

preserves areas (Reynolds, 1993), meaning that the area of any
closed region on H2 equals that of the corresponding region on the
plane (Fig. 11). (R1/2–R�1/2) is the diameter of the Mohr circle of
strain (Brace, 1961). This projection is useful for displaying the
variation of ellipses, because the variation is visualized by the
dispersion of data points on H2. The area preservation guarantees
that density of points on H2 is preserved on this map. Straining of
ellipses in the physical space corresponds to the translation of
points on H2, which does not affect their density. So, the points
indicating pre- and post-strain ellipses have the same dispersion on
this map. For this reason, this projection gives the best visualization
for the dispersion of Rf/f data.

4.4.2. Gnomonic projection
Gnomonic projection transforms a point on H2 along a line

through the origin O onto the disk that is denoted by x0¼1 and
x2

1 þ x2
2 < 1. Points on the fringe of this disk (vD in Fig. 4) represent

points at infinity, and the entire surface of H2 is mapped onto the
disk (Fig. 12). This projection has the expression,

z ¼ tanh r ¼
�

R2�1
�.�

R2 þ 1
�

(18)

where 0� z< 1 (Fig. 10). Geodesics on H2 are mapped to straight
lines on the disk. A horocycle (Fig. 8) is mapped to an ellipse that
inscribes vD. Specifically, a horocycle through C is shown on this
projection by a circle.

This projection is convenient for determining the mean kine-
matic vorticity number (Section 5.2). The plot by Jessup et al. (2007)
was devised for this purpose, and takes tanh r and f as rectangular
Cartesian coordinates instead of the polar coordinates of the gno-
monic net proposed in this article.
Fig. 9. Solid line on H2 showing the orbit corresponding to super shear. The orbit lies
on the plane with the pole vector v. Dashed line shows the cone in Fig. 4.
4.4.3. Equidistant projection
The plot of Elliott (1970) is the equidistant projection of H2, and

has the relationship z¼ r¼ log R. In spite of the adjective ‘equi-
distant,’ distances on the map is correct only from the map center C.
Distances between other points are not. The name of this projection
is used by Reynolds (1993) to emphasize the correspondence to the
equidistant projection of the globe.
Fig. 11. Equal-area net of H2. Radial lines and concentric circles are iso-R and 4 lines,
respectively, for indicating the shapes and orientations of ellipses. Radius of the circles
are given by Eq. (17). Center of this net corresponds to the point C in Fig. 4, and arrow
indicates the reference orientation.



Fig. 12. Gnomonic net of H2. Center of this net corresponds to the point C on H2, and
triangle indicates the reference orientation. Eq. (18) gives the radii of iso-R circles.
Mean kinematic vorticity number Wm can be determined with this net (Section 5.2).
The outermost circle with tick marks indicate vD in Fig. 4, points on which represent
ellipses with R¼N. Decimals attached on the marks indicate the kinematic vorticity
number by Eq. (A5).
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This projection is useful, if one needs the directions and
distances of points from a specific location on H2. In this case, the
location along with the points to the point C on H2 using Eq. (14).
Then, the equidistant projection of the points shows the directions
and distances from the specified location to the original points. This
method is used in Section 5.2 for error estimation of Rf/f strain
analysis. The hyperbolic net of De Paor (1988) is a variant of this
projection in that the hyperbolic net uses the angle f (Fig. 1),
instead of the double angle j, as the tangential components.

4.4.4. Orthographic projection
The plot by Wheeler (1984) is the orthographic projection of H2,

i.e., the orthogonal projection onto the x1x2-plane. This projection is
denoted by the equation, z¼ sinh r (Eq. (8)). It is the strong point of
this projection that strain paths for coaxial strain are expressed by
parallel lines on the plot. The trend of the lines corresponds to the
maximum stretching axis in the physical space. Therefore, it is easy
to see if an ellipse can be transformed from another by strains with
a prescribed stretching axis.

5. Strain analysis

Aspect ratios and orientations of pre- and post-strain ellipses
are related to each other by a couple of complicated equations
(Ramsay, 1967, p. 205–9). By means of hyperbolic geometry, this
relationship is simplified to the linear transformation in Eq. (13).
And, the theories of two-dimensional strain analysis are simplified
as well. We consider a few of them in this section.

5.1. Coaxial strain determined from Rf/f data

First, we consider the determination of coaxial strain from Rf/f
data obtained from elliptical strain markers such as pebbles (Flinn,
1956; Hossack, 1968) and ooids (Cloos, 1947) or from non-elliptical
fossils (e.g., Lisle, 1985) observed on a section of a deformed rock. A
homogeneous deformation of the markers and their matrix is
assumed as usual. It is shown that the confidence region of inferred
strain is easily obtained in our formulation.

Suppose that we observed n elliptical strain markers, and that
the shape and orientation of the markers are transformed into the
data points xð1Þf ;.;xðnÞf on H2 via Eq. (9). Here, our task is to
determine the point xs indicating the optimal strain for the data
and its error.

5.1.1. Hyperbolic vector mean
To determine the optimal strain, we make a simple assumption

for the pre-strain distribution of the points fxð1Þi ;.; xðnÞi g. That is,
the points have the centroid at the point C on H2. This is denoted by
the equation,

½xð1Þi þ/þ xðnÞi �= k xð1Þi þ/þ xðnÞi k¼ ð1;0;0ÞT: (19)

Note that strain is denoted by translation upon H2, and the
translation does not affect distances between points on H2. It
follows that, on the one hand, the strain that carries fxð1Þi ;.; xðnÞi g
to fxð1Þf ;.; xðnÞf g transforms the centroid of the former set to that of
the latter. On the other hand, the point C represents the unit circle
in the physical space, and the strain ellipse is the result of strain
from the unit circle. Therefore, the latter centroid coincides with
the point on H2 that represents the strain ellipse. Determination
of the optimal strain is surprisingly simple in the present formu-
lation: the strain for the data is represented by the mean,

bxs ¼ l=k l k; (20)

where

l ¼ xð1Þf þ/þ xðnÞf (21)

and k l k are termed the resultant vector and the resultant length of
data vectors, respectively (Jensen, 1981). The same terms are used
in spherical statistics (Mardia, 1972; Mardia and Jupp, 1999). It is
straightforward to take into account measurement errors of data.
The weighted mean

bxs ¼
wð1Þxð1Þf þ/wðnÞxðnÞf��wð1Þxð1Þf þ/wðnÞxðnÞf

��
deals with those data, where w(i) is the weight of the ith datum.

Once the optimal point bxs is obtained, the corresponding r- and
j-values are calculated by the inverse of Eq. (9). That is,

r ¼ cosh�1 x0 ¼ log
�

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � 1
q �

(22)

j ¼ atan2ðx2; x1Þ (23)

where atan2(x2, x1) denotes the arctangent of x2/x1 and has the
range (�p, p] corresponding to the quadrant of the x1x2-plane. In
this way, the optimal values brs, bjs, bRs ¼ expðbrsÞ and bfs ¼ bjs=2
are derived from bxs.
5.1.1.1. Example 1. The method of hyperbolic vector mean was
tested, first, with the natural Rf/f data from the photomicrograph of
282 deformed ooids in Ramsay and Huber (1983). The data were
transformed into position vectors xð1Þf ;.; xð282Þ

f via Eq. (15), and the
hyperbolic vector mean was calculated using Eqs. (20) and (21). As
a result, I obtained the optimal values, bRs ¼ 1:50 and bfs ¼ �46:9

�

(Fig. 13), which are included by the 95% confidence intervals
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bRs ¼ 1:51� 0:06 and bfs ¼ �46:9
� � 2:3

�
determined by the

method of Yamaji (2005).

5.1.1.2. Example 2. The second data set is artificial for simulating Rf/
f data deformed from fossils, which are not necessarily elliptical.
The graphical method of Wellman (1962) is usually employed to
estimate strain from such fossils, but Rf/f data can be obtained from
the ellipses inscribing rectangles that are fitted on certain parts of
the fossils (Fig. 14a) (Lisle, 1985). A specific part of fossils has
a certain shape with individual variation to some extent if the
fossils belong to one paleontological taxon. Accordingly, the ellipses
abstracted from that part have a narrow range of Ri values. The
artificial data in Fig. 14b were generated with the parameters Rs¼ 2
and fs¼ 0 to simulate such a data set. The present method yielded
the solution, bRs ¼ 2:000 and bfs ¼ 0:000

�
. That is, the optimal

strain ellipse exactly coincided with the assumed one.
Theoretically, the present method is perfectly accurate, provided

that pre-strain points had the centroid at C. Deviation of the
centroid from C directly gives rise to the inaccuracy of the optimal
solution. The artificial data in Fig. 14 were generated with the pre-
strain points exactly at C. Therefore, the strain estimation was
perfect. Uncertainty of the estimated strain comes from the finite
number of data.

5.1.2. Error analysis
The bootstrap method (e.g., Davison and Hinkley, 1997) is

employed to draw a confidence region of the optimal strain on H2.
Suppose that we observed n strain markers, from which n data are
resampled with replacement to make m¼ 10n bootstrap data sets.
Then, by means of Eq. (20), the optimal solutions bð1Þ;.;bðmÞ are
determined for the bootstrap data sets. The spread of those points
around their centroid bb indicates the uncertainty of the optimal
solution bxs (Fig. 15). This centroid is obtained by Eqs. (20) and (21),
where xf

(i) in the latter equation is replaced by b(i).
Following Michael (1987) who estimated the uncertainty of

stresses obtained from focal mechanism data by means of bootstrap
resampling, a confidence region of the optimal strain is defined as
a closed region on H2. Namely, if a 95% confidence region is
required, the solutions bð1Þ;.;bðmÞ are sorted in ascending order of
their distances from the centroid. Then, the confidence region is the
polygon that contains only the first 0.95m solutions.

We consider a method for error estimation for the optimal
strain determined from strain markers that may have significant
a

Fig. 13. (a) Equal-area projection (Section 4.4) showing the optimal strain (cross) and its 95%
the deformed ooids in (Ramsay and Huber, 1983, p. 83). Solid triangle indicates the referenc
area projection. (b) Close-up of the 95% confidence regions and the optimal strains strains de
optimal solutions by the methods, respectively.
pre-strain anisotropy expressed by the cluster of the points
xð1Þi ;.; xðnÞi with non-rotational symmetry around the point C on
H2. Sedimentary grain fabric has such anisotropy to some extent
(Griffiths, 1967). That is, Potter and Pettijohn (1963, p. 44) pointed
out that sedimentary particles often exhibit bimodal orientations
separated by w90�. This tendency is expressed by an eccentric
cluster of data points centered by the point C on H2 (Yamaji and
Masuda, 2005). Other types of initial grain fabric, including strong
imbrication, lead to inaccuracy of the present technique. Given the
stretching orientation of the sediment, the method of De Paor
(1988) can be employed to evaluate the strain from imbricated
fabrics.

The artificial Rf/f data in Fig. 14b have such asymmetry as
described by Potter and Pettijohn (1963) and Yamaji and Masuda
(2005). In those cases, cluster of the points bð1Þ;.;bðmÞ exhibits
significant deviation from rotational symmetry about the point bb,
and shows elongation similar to the cluster of the post-strain points
xð1Þf ;.; xðnÞf . Dashed line in Fig. 15b shows an example. This line is
elliptical on this figure, the eccentricity of which is due to the
distortion of the equal-area projection. The region encircled by this
line is a circle on H2. However, the points bð1Þ;.;bðmÞ make an
elliptical cluster on H2. This is evidenced by the dots that are not
enclosed by the dashed line in Fig. 15b. They are scattered out of the
region depicted by the dashed line. To cope with the eccentric
shape of the cluster on H2, the confidence region of bxs drawn on H2

should be an oval.
To meet the requirement above, the spread of bð1Þ;.;bðmÞ is

evaluated by the Mahalanobis distances (Duda et al., 2001) from the
cluster center bb on H2. For this purpose, this center along with the
points is translated to the area around the point C on H2 so that the
new centroid coincides with this point and that the azimuthal
equidistant projection can be used to estimate the azimuth and
distance of points from their centroid. Then, the ith point moves to
~bðiÞ ¼ ½Q ðbbÞ��1bðiÞ (Eq. (14)). Since the translation does not affect
the relative positions between the points, the centroid of
~bð1Þ;.; ~bðmÞ exists at C. Then, the azimuthal equidistant projection
of the points preserves the azimuths and distances of the points
from C (Section 4.4.3). Let y(i) be the projection of ~bðiÞ. Then, the
points yð1Þ;.; yðmÞ make a cluster at the center of equidistant chart.
The covariance matrix (Johnson and Wichern, 2002),

c ¼ 1
m

n
yð1Þ

h
yð1Þ

iT
þ/þ yðmÞ

h
yðmÞ

iTo
;

b

confidence region (polygon) determined by the present method for the Rf/4 data from
e orientation. The parameters z (Eq. (17)) and j are the polar coordinates of the equal-
termined by the present and Yamaji’s (2005) methods. Cross and diamond indicate the



a b

Fig. 14. Example of non-elliptical strain markers. (a) Schematic illustration showing deformed fossil leaves. Ellipses are fitted on parallelograms with the sides being parallel to
specific veins. The ellipses give Rf/4 data. (b) Equal-area projection showing artificial data simulating the cases like (a). Points corresponding to 200 pre-strain ellipses have the
centroid at the origin of this plot. Post-strain ellipses were generated from the pre-strain ones with the assumed strain, Rs¼ 2 and 4s¼ 0. The pre-strain points have the centroid at
C. Solid line centered by the cross denotes the 95% confidence region of the optimal strain ellipse.
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characterizes the eccentric cluster shape, thereby the Mahalanobis

distance of y(i) from the center is written as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½yðiÞ�TC�1yðiÞ

q
: This

distance is used as the key to sort the bootstrap solutions
bð1Þ;.;bðmÞ. Namely, the solutions are renumbered to have the
ascending order of the Mahalanobis distances of yð1Þ;.;yðmÞ. If we
want to determine the (100a)% confidence region, the polygon
enveloping only the points bð1Þ;.;bð100amÞ on H2 approximates the
confidence region of the optimal solution bxs, where 0< a< 1
(Fig. 15). For example, the value a¼ 0.95 is used when 95% confi-
dence region is required.

Once the confidence region is drawn on H2, we use the method
used by Yamaji (2005) to evaluate the confidence intervals of the
optimal R- and 4-values. First, the circles that inscribe and
circumscribe the confidence region are drawn on H2 to determine
D1r and D2r (Fig. 16). The sector that has the apex at the origin with
the smallest apical angle to include the region is also used to define
a

b

Fig. 15. (a) Equal-area projection (Section 4.4) of data points xð1Þ;.; xð100Þ on H2. The
points make an elliptical cluster, indicating a pre-strain anisotropic fabric. Cross and
white polygon indicate the optimal strain and its 95% confidence region. The param-
eters z (Eq. (17)) and j are the polar coordinates of the equal-area projection. (b) Close-
up of the confidence region (solid line). The optimal solution and its confidence region
were determined upon H2, and visualized on this Euclidean plane. The 95% confidence
region determined not by the Mahalanobis but by the hyperbolic distances is shown by
dotted line.
D1j and D2j. The former pair is transformed into the lower and
upper confidence limits for the optimal aspect ratio bR as
expðbrs � D1rÞ and expðbrs þ D2rÞ, respectively. Those of the optimal
major-axis orientation are ðbjs � D1jÞ=2 and are ðbjs þ D2jÞ=2. If
the confidence region includes the origin, these error bounds
become indeterminate. The 95% confidence intervals for the
example in Fig. 13 are bRs ¼ 1:50� 0:06 and bfs ¼ �46:9

� � 2:6
�
,

largely identical with those of (Yamaji, 2005). The confidence

intervals for the example in Fig. 14 are bRs ¼ 2:000 þ0:114
�0:108 andbfs ¼ 0:000

� þ2:167
�

�2:157
� . For the case of the data with strong anisotropy in

Fig. 15, the optimal strain has the parameters, bRs ¼ 2:717 þ0:236
�0:219 andbfs ¼ 0:556

� þ1:806
�

�2:071
� .

5.2. Kinematic vorticity analysis

Rotational wakes of rigid particles are used to infer the vorticity
of the paleo flow field in sheared rocks. Specifically, kinematic
vorticity analysis estimates the kinematic vorticity compatible with
those flow patterns (e.g., Ghosh and Ramberg, 1976; Means et al.,
1980; Passchier and Simpson, 1986; Passchier, 1987; Wallis et al.,
1993; Wallis, 1995; Simpson and De Paor, 1997). The gnomonic
projection gives a simple graphical technique to solve this problem.

Assuming that particle shapes are approximated by ellipses with
the aspect ratio R¼ exp (r) and that the flow field is the superpo-
sition of simple and pure shears, Bobyarchick (1986) derived
Fig. 16. Confidence region (thick line) on H2 determined as the envelope containing
the specified fraction of bootstrap solutions (dots) near the optimal solution (cross).
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a formula for describing the attractor of the major-axis orientations
of the particles as a function of the aspect ratio of a particle and Wm,
the mean kinematic vorticity number of the flow field. According to
Passchier (1987, p. 685), the function is rewritten as

j ¼ sin�1
�

Wm

tanh r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2r�W2

m

q �	
(24)

where r and j are hyperbolic spherical coordinates. The angle j is
measured from the shearing direction. Circular particles rotate in
the rotation sense concordant with the vorticity of the flow, but
long particles can rotate backward. The line denoted by Eq. (24) is
the separatrix, meaning that the line separates H2 into two regions.
That is, particles represented by points on the different sides of the
line rotate in different senses. So, Simpson and De Paor (1993, 1997)
proposed the porphyroclast hyperbolic distribution method, which
uses the rotation senses in conjunction with r and j values of
particles to determine the position of the separatrix and further to
constrain a Wm value. Simpson and De Paor showed that a hyper-
bola enclosing all points representing back-rotated particles indi-
cates this line on their hyperbolic net (De Paor, 1988). A limb of the
hyperbola is asymptote to the shearing direction.

The method of Simpson and De Paor (1993, 1997) is simplified
by means of the gnomonic net, where the entire surface of H2 is
mapped onto the disk with the unit radius (Fig. 12), whereby Wm

value is obtained by simple graphical procedures. On this net, the
separatrix is a chord, an end of which exists at the point of infinity
with the parameters r¼N and j¼ 0. The other end indicates the
Wm value (Fig. 17). The Wm value is determined by finding a straight
line on the net to separate points of back-rotated particles from
other points (Appendix A).

Fig. 17 shows an example of the graphical method applied to
artificial data. This is a difficult example in that the cluster of points
corresponding to back-rotated particles partly overlaps that of
other particles. Dashed lines in this figure are chords meeting at the
point of infinity parallel to the foliation, and show the possible
range of the separatrix. That is, if the line through the data point
with the label ‘a’ is chosen, the upper-right side of the line includes
not only the data with backward rotations but also four data points
with forward rotations. If the other line is chosen, the lower-left
side of the line includes all the data points with forward rotations
and those with backward rotations as well. There is no line for the
clear separation of rotation senses.

This problem is a special case of linear discriminant analysis,
which seeks a line to separate data points on a plane according to
the labels linked to the data (Duda et al., 2001). In the case of
Fig. 17a, the separator is a ray from the point indicated by the
triangle in the figure, and the labels are the rotation senses.

Here, we evaluate the goodness of position of the borderline to
determine the optimal value and uncertainty of Wm. Points corre-
sponding to back-rotated particles should be plotted on the upper-
right side of the borderline, but the points are plotted on the both
sides of a borderline in this range. Let nB be the number of those
points on the lower-left side of a borderline, and nF be the number
of points corresponding to forward-rotated particles on the upper-
right side of the line. The total number of data is n. Accordingly,

ER ¼ maxðnB;nFÞ=n (25)

is the error rate of the position of the borderline. Namely, the
optimal value of Wm is determined by positioning the separatrix to
minimizing this rate.

In order for counting the numbers nF and nB, we need a simple
criteria to judge which side of the separating line a data point exists
on the gnomonic map. To understand the criteria, suppose the point
P in Fig. 18. The Wm value corresponding to the line AP is obtained
from the polar coordinates, z and j, of P as follows. Since the right
triangles ABC and CBE in Fig.18 are similar to each other, the line AP is
expressed in terms of the Cartesian coordinates A-pq as q¼ p tan(p/
2�q0). This tangent equals the ratio of the lengths FP abd AF, which
further equal z sin j and (1– z cos j), respectively. It follows that

tan
�

90
� � q0

�
¼ z sinj=ð1� zcosjÞ: (26)

It follows from Eqs. (26) and (A.4) that

Wm ¼ RHS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RHS2 þ 1

q
; (27)

where RHS is the right-hand side of Eq. (26).
In the case of Fig. 17, the range Wm¼ 0.493–0.583 indicates the

maximum possible uncertainty. The ER value is minimized in the
interval Wm¼ 0.535–0.556, the midpoint of which gives the
optimal Wm value at 0.546. In case where the clusters of different
rotation senses are clearly separated on the gnomonic projection,
there is the interval of Wm where nB¼ nF¼ 0 (Fig. 19). The interval
marks the uncertainty of Wm value for the given data set, and the
optimal Wm value is obtained as the midpoint of the interval.

6. Comparison with previous methods

6.1. Techniques for determining coaxial strain

6.1.1. Method of Mulchrone et al. (2003)
The method of Mulchrone et al. (2003) for determining optimal

strain from Rf/f data is equivalent to the present one, though
formulations are different. The methods have different techniques
for error estimation.

First, Mulchrone et al. (2003) normalize an ellipse by its area
being equal to p. Then, they express an ellipse using its moving
radius [(4) (Fig. 1). Their basic idea is that the mean of moving radii
of post-strain ellipses may approximate the strain ellipse, if the
ellipses have the centers at the same point (Fig. 20). To this end,
they introduce the expression

1=[2 ¼ p� ðm cosjÞcos24� ðm sinjÞsin24 (28)

for an ellipse with the major-axis orientation f/2, where the
parameters p¼ R/2þ1/2R and m¼ R/2�1/2R characterize the
ellipse shape (Mulchrone et al. 2003, Eq. 10). Using Eqs. (7) and (8),
we obtain p¼ cosh r¼ x0 and m¼ sinh r¼ r, where r and x0 are the
cylindrical coordinates of a point x ¼ ðp;m cosj;m sinjÞT on H2

(Fig. 4). It follows from Eq. (28) that

1=[2 ¼ �x+c; (29)

where c ¼ ð1; cos24; sin24ÞT indicates a point on vD in Fig. 4. The
right-hand side of Eq. (29) is guaranteed to be positive in sign,
because both x and c have the end points above and on the cone
(Section 4.1).

Suppose that we have n ellipses. We take the generalized mean
with the power �2 of the moving radii of the n ellipses [s such that

ð[sÞ�2h
1
n

nh
[ð1Þ
i�2
þ/þ

h
[ðnÞ
i�2o

; (30)

where [(i) is the ith radius. Combining Eqs. (29) and (30), we have

ð[sÞ�2¼ 1
n
½ � xð1Þf +c�/� xðnÞf +c� ¼ �1

n
½xð1Þf þ/þ xðnÞf �+c

Rearranging this equation, we obtain

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k l k =n

q
[s

��2

¼ �bxs+c; (31)



b

a

Fig. 17. (a) Schematic illustration showing the determination of the mean kinematic vorticity number Wm on the gnomonic net for the data that consist of the shapes, orientations
and rotation senses of 40 rigid particles. Solid lines through the points with the labels ‘a’ and ‘b’ indicate the possible range of the line separating rotation senses. The upper-left ends
of the lines indicate the lower and upper limits of the number for this artificial data set. Dotted line from solid circle to triangle indicates the horocycle on H2 denoted by Eq. (A2). (b)
The optimal Wm value for the data determined as the midpoint of the interval of minimum error rate (Eq. (25)).
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where bxs is the hyperbolic vector mean in Eq. (20) and l is the
resultant vector (Eq. (21)). Comparison of Eqs. (29) and (31) leads us
to the interpretation that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k l k =n

p
[s is the moving radius of the

strain ellipse that is represented by bxs. Jensen (1981, p. 200) shows
Fig. 18. Schematic illustration for deriving Eq. (26).
k l k� n, where equality holds only if all the n ellipses are identical.
Therefore, [s denotes the moving radius of an ellipse similar to and
smaller than the strain ellipse (Fig. 20). The explanation on [s by
Mulchrone et al. (2003) is misleading, because they suggest as if [s

is the arithmetic mean of the moving radii (especially their Fig. 2).
It is obvious in our formulation that the limitations made by

Mulchrone et al. (2003, p. 530) are not essential. They limited the
applicability of their method to such cases where (1) ji is a uniform
random variable on the [0, 2p] interval, and (2) the variable Ri is
independent from fi. That is, distribution of the points xð1Þi ;.; xðnÞi
0.0 1.0

Optimal

nB/n
nF/n

Wm

Fig. 19. Optimal value and uncertainty of Wm.



Fig. 20. Three ellipses illustrating three Rf/4 data. Dashed and thick lines indicate the
strain ellipse determined as the hyperbolic vector mean bxs and [s determined by Eq.
(31) for the data.

x1x2-plane

Fig. 21. Confidence regions A and B on H2, the latter of which includes the point C. A0

and B0 are the orthogonal projections of the regions onto the x1x2-plane.
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is assumed to have rotational symmetry with respect to the point C.
Their optimal strain is identical with that indicated by our hyper-
bolic vector mean. The necessary condition of the latter is that the
centroid of the points xð1Þi ;.; xðnÞi is located at the point C. This is
looser than the two conditions. For example, the data in Fig. 14
satisfy neither of their conditions. That is, those points are
distributed along an elliptical line on the equal-area projection, but
we have obtained the accurate solution via the hyperbolic vector
mean.

Mulchrone et al. (2003) estimate the confidence intervals of Rs

and fs by means of the bootstrap resampling, and the cluster size of
bootstrap solutions on the conventional log R�f plot (Fig. 3) is used
to evaluate the intervals. Accordingly, their estimate is largely
identical with ours (Fig. 16), when the cluster does not include the
point C on H2 like the region A in Fig. 21. If a confidence region on H2

include this point like the region B in this figure, the intervals
cannot be evaluated.

In contrast, our error estimation firstly draws a closed loop on H2

for denoting a confidence region. So, a confidence region is clearly
defined for the both cases in Fig. 21. Then, the confidence intervals
of Rs and fs are evaluated from the loop, but this second step is not
done for the case B. Definition of appropriate distance in a param-
eter space is essential to define such a confidence region whatever
the parameter space is. The hyperboloid model meets this demand.

6.1.2. Method of Yamaji (2005)
The method of Yamaji (2005) calculates an optimal strain ellipse

and its error from Rf/f data. It can deal with data with pre-strain
anisotropy, but has a weakness. That is, optimal solutions become
inaccurate when the spread of data is large (Yamaji, 2005, Figs. 9
and 10), though the inaccuracy is practically small. The reason for
this is now understood. The present method has no such
inaccuracy.

Yamaji (2005) assumed that the pre-strain points obey a bivar-
iate normal distribution (Johnson and Wichern, 2003) with the
mean at the origin of the equidistant projection, which has the
polar coordinates r and j. Let us use the bold capital letter X to
represent a point and the corresponding position vector on this
projection. Once a point on the projection Xs ¼ ðrscosjs; rssinjsÞT
is assumed to represent strain, the pre-strain points Xð1Þi ;.;XðnÞi are
easily obtained from the post-strain points Xð1Þf ;.;XðnÞf using Eqs.
(1) and (2). So, the method of Yamaji (2005) seeks out the point Xs,
thereby the likelihood of the bivariate normality applies best to the
pre-strain points. The unlikeness is evaluated by Hotelling’s T2

statistic (Johnson and Wichern, 2002),

T2 ¼ ½Xð1Þi �
TSXð1Þi þ/þ ½XðnÞi �

TSXðnÞi

where

S ¼ 1
n� 1

f½Xð1Þi �
TXð1Þi þ/þ ½XðnÞi �

TXðnÞi g
is the covariance matrix of the pre-strain points about the origin. S
and T2 are functions of the data Xð1Þf ;.;XðnÞf and of the strain to be
determined. Accordingly, the optimal strain for a given data set is
obtained by seeking out the strain that minimizes T2.

This method gradually becomes inaccurate with the increasing
spread of those vectors. Two factors affect this accuracy. Distortion
of the equidistant projection increases with the distance from the
point C on H2. Accordingly, if the cluster of the pre-strain points is
large, this effect becomes significant. To avoid the distortion,
a hyperboloid distribution (Barndorff-Nielsen, 1987; Jensen, 1981)
should be utilized instead of the bivariate normal distribution.
More important factor is statistical. Maximum likelihood estima-
tion is a popular statistical method used to calculate the best way of
fitting a mathematical model for some data (Van den Bos, 2007).
The estimation has optimal properties for statistical parameter
estimation. For example, the estimated parameters asymptotically
approaches the true ones with increasing number of data. The
minimization of T2 has no such properties. The maximum likeli-
hood estimate of strain with the assumption above is obtained by
maximizing

L ¼ �n
2

T2 � n
2

log



S


� n log 2p: (32)

This is called the likelihood function, and is derived in Appendix
C. Since S indicates dispersion of the pre-strain points, the effect of
the second term in the right-hand side of this equation become
significant relative to the first term with the increase of this spread.
This leads to the inaccuracy of Yamaji (2005) method.

The fact is that the hyperbolic vector mean (Eq. (20)) is the
maximum likelihood estimate of the mean of a hyperboloid distri-
bution (Jensen, 1981). Random work from a point on a Euclidean
plane results in a density distribution obeying a bivariate normal
distribution, whereas that on a unit sphere obeys a von Mises–Fisher
distribution (e.g., Mardia and Jupp, 1999). The distribution on H2 is
known to obey a hyperboloid distribution (Jensen, 1981). Accord-
ingly, the strain ellipse represented by the mean is the most
appropriate estimate if we have no a priori information on data or
strain. Arithmetic mean and standard deviation are useful in many
cases when the vectors are in a Euclidean space, even if the statistical
distribution of the vector population is uncertain. The variation of
shapes and orientations of deformed fossil part such as those in
Fig. 14 does not obey a hyperboloid distribution. However, the
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hyperbolic vector mean gives accurate strain ellipse in both cases.
This is because coaxial strain is represented by a rigid-body move-
ment of the cluster of points on H2, and the centroid of the initial
cluster is mapped to the centroid of the final one. Therefore, the
present method determines perfectly accurate strain, provided that
the initial centroid was at the point C on H2.

6.1.3. Theta-curve method
The q-curve method of Lisle (1977) is the fist computerized

technique for determining strain from Rf/f data, and utilizes
a mathematical inversion with the assumption that the pre-strain
orientations fð1Þi ;.;f

ðnÞ
i obey a uniform distribution. Namely, the

optimal strain is determined so as to maximize the c2 statistic that
is the function of Rs and fs indicating the uniformity of the
orientations.

This inverse method has weakness. First, pre-strain grain fabric
is assumed to be isotropic, but sedimentologists have described
anisotropic fabrics possibly suggesting sedimentary environments
(Potter and Pettijohn, 1963; Griffiths, 1967; Middleton and South-
erd, 1977). Second, this method is known to be numerically
unstable, thereby error estimation based on the method is difficult
(Yamaji, 2005). Specifically, c2 has multiple peaks for a dataset. As
a result, the uncertainly of the optimal strain for the data is denoted
not by a simply connected confidence region but by multiple
confidence regions on the Rs�fs plot. In order to stabilize the
mathematical inversion to estimate strain, not only the initial
orientations but also initial aspect ratios of strain markers should
be taken into account (Yamaji, 2005). The methods of Mulchrone
et al. (2003) and Yamaji (2005) and of the present article have no
such instability.
6.2. Kinematic vorticity analysis

There are a few techniques to estimate mean kinematic vorticity
number Wm. Those of Passchier (1987) and Wallis (1992) utilize the
critical aspect ratio Rc below which rigid particles continuously
rotate and hence their long-axis orientations have a large variation,
and above which they display a preferred orientation. Rc has a one-
to-one correspondence with Wm. Finding this threshold from shape
fabric is feasible, but Rc value is often ambiguous. Many samples
show a gradual decrease in the variation of long-axis orientations.
As a result, the interval in which the variation exhibits a rapid drop
is used as the uncertainty (e.g., Law et al., 2004). Depending on
tectonic settings, the gradual change may have several origins,
including initial preferred orientations prior to the onset of defor-
mation, heterogeneous flow field owing to the interaction between
particles or to the heterogeneous rheology of the matrix.

Statistically relevant error estimation is not easy for the tech-
nique of finding Rc because of the difficulty of statistical modeling
of shape fabric below the threshold. It is inappropriate to assume
a uniform distribution for long-axis orientations, because rotation
velocity depends on the orientation. Although particles fatter than
this threshold rotate continuously, their angular velocities depend
on long-axis orientations (Jeffrey, 1922). As a result, the orienta-
tions have tendency to have a preferred orientation around which
the rotations are retarded.

The hyperbolic distribution method by Simpson and De Paor
(1997) and its variants including the techniques using the gno-
monic net (Section 5.2) utilize not only Rc but also the decreasing
pattern to estimate Wm. The advantage of the technique using the
gnomonic net is that both an optimal Wm value and its uncertainty
are estimated graphically only with a ruler and the net in Fig. 12.

The uncertain statistical distribution of long-axis orientations
hinders the quantitative estimation of the specific percentile
interval of Wm, e.g., a 95% confidence interval. Owing to this
difficulty, we estimate the uncertainty by the interval of mis-clas-
sification in Fig. 17b or by the gap.

By means of the simplified hyperbolic distribution method,
Forte and Bailey (2007) applied bootstrap method only to back-
rotated particles for evaluating the confidence interval of Wm.
Namely, they dealt only with those particles, and the maximum j

value of the particles was assumed to be equal with q0 in Figs. 18
and A1. Then, the Wm value corresponding to the maximum was
calculated through Eq. (A.4). Bootstrap samples were taken only
from those particles, and the maximum was determined for each of
the samples to calculate Wm. The maximum j value of the samples
was assumed to be equal to that of the population which is rep-
resented by the samples. It follows that the true population
maximum was smaller than the observed maximum. The particles
with large j values are thought of as ‘outliers,’ meaning that
increasing number of back-rotated particles was expected to clarify
those being exceptional. However, the assumption does not always
hold. Instead, it is improbable that there is a generally relevant
statistical distribution for the shape fabric of porphyroclasts. It is
equally possible that the statistical distribution of j of back-rotated
particles have a heavy tail, in which samples have large j values.
Their error analysis is not appropriate in this case.
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Appendix A. Gnomonic projection and vorticity analysis

The line defined by Eq. (24) is demonstrated in this appendix to
be a geodesic on H2 using the gnomonic projection. In this case, the
geodesic lies on a plane the x0-axis. In terms of the polar coordi-
nates (z, q) on the gnomonic projection (Section 4.4.2), Eq. (24) is
simplified to

zsinq ¼ Wm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �W2

m

q �
; (A.1)

where the relationship between z and R is given by Eq. (18), and
q¼ j¼ 2f is assumed for the projection. Points at infinity from the
point C on H2 have the radial coordinate z¼ 1. The polar coordinates
constrained by Eq. (A.1) indicate a line on the gnomonic projection.
This line is referred to as L.

The points A and B in Fig. A1 are the ends of L. First, we show
that the triangle ABC has a right angle at B. The point A is defined by
z¼ 1, and represents the infinitely long ellipse, R¼N and f¼ 0. The
length AC equals 1, because points at infinity from C on H2 are
mapped onto the unit circle. The end B of L is defined by z¼Wm,

because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �W2

m

q
in Eq. (A.1) is imaginary for z<Wm. This reflects

the fact that circular particles in the physical space cannot rotate
backward. At the point B, Eq. (A.1) reduces to

sin q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
: (A.2)

The lengths of AC and BC are 1 and Wm, respectively. It follows
from Eq. (A.2) that ABC is a right triangle with the side AC being the
hypotenuse and :ABC¼ 90�. The circle with the diameter AC
circumscribes this triangle and inscribes vD. Such a circle on the
gnomonic projection is a horocycle through the point C on H2.

In order to show that the point P(z, q) satisfying Eq. (A.1) is
constrained on the straight line AB, we assume that P can deviate
fro this line. The distance of P from AB is referred to as s. It is obvious
from Fig. A1 that PU ¼ zsinq, which is rewritten by Eq. (A.1) as



Fig. A1. Gnomonic projection of H2 for the explanation of vorticity analysis. Thick curve L is the line denoted by Eq. (A1). A and B are the ends of the curve. vD is the circle shown in
Fig. 4, and represent points at infinity from C on H2. P indicates the point with the polar coordinates (z, q), which satisfy Eq. (A1). Dashed line is the semicircle that circumscribes
DABC and inscribes vD. Line ST through P is parallel to the side AB. Lines PU and BV are perpendicular to AC.
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PU ¼ Wm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �W2

m

q �
: (A.3)

The right triangle ABC has the side BC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
. So,

BV ¼ cosq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
. The right triangle CPS has the side

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ðWm þ sÞ2

q
, where s is the distance of P from AB. It

follows that SE ¼ cosq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ðWm þ sÞ2

q
. Since Wm has a value in

the range from 0 to 1, the formula (Bobyarchick, 1986; Passchier,
1986),

cosq0 ¼ Wm; (A.4)

is obtained from Eq. (A.2). Accordingly, we have
BV ¼ Wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
. Substituting this in to Eq. (A.3), we obtain

PU ¼ BV�Wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �W2

m

q
and PF ¼ Wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �W2

m

q
. It follows that

SE ¼ PFþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
: Rewriting this, we arrive at the equation,

Wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ðWm þ sÞ2

q
¼ Wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �W2

m

q
þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

m

q
:

The deviation s should vanish in order for this equation to hold
for any z greater than Wm. That is, the line L must coincide with the
straight line AB in Fig. A1. Straight lines on the gnomonic projection
are images of geodesics on H2. Thus, the line defined by Eq. (24) has
been proved to be such a geodesic.

Given a Wm value, the point Q can be uniquely determined. That
is, CB is the perpendicular bisector of the chord AQ. So, :ACQ¼ 2q0.
From Eq. (A.4), we obtain the equation (Bobyarchick, 1986)

2q0 ¼ 2cos�1Wm (A.5)

Appendix B. Relationship between pole vector and mean
kinematic vorticity number

The separating line AQ in Fig. A1 is a straight line on the gno-
monic projection, meaning that it is a shadow of a geodesic on H2.
The pole vector v of this geodesic is determined as follows. The
point B in this figure indicates the point on the geodesic nearest
from the point C on H2. From Fig. A1 and Eq. (18), we have
CB ¼ Wm ¼ tanh 9, where CB and 9 are the lengths of CB on the
projection and on H2, respectively. It follows that the point corre-
sponding to B on H2 has the Cartesian coordinates
ðcosh 9; sinh 9 cosq0; sinh 9 sinq0Þ. The position vector with those
components is perpendicular to the pole vector v, which exists on
the plane containing the point and the x0-axis. Therefore, we obtain
v ¼ ðsinh 9; cosh 9 cosðq0 þ pÞ; cosh 9 sinðq0 þ pÞÞT. Then, inclina-
tion of this vector is v0=vr ¼ sinh 9=cosh 9 ¼ tanh 9 ¼ Wm, where
v0 and vr are the cylindrical components of the pole vector.

Appendix C. Maximum likelihood estimation of bivariate
normal distribution

Eq. (32) is derived as follows. The pre-strain vectors were
assumed to obey the bivariate normal distribution with the prob-
ability density

pðXiÞ ¼
1

2pjSj1=2
exp

�
� 1

2
XT

i SXi

�
:

If data are statistically independent from each other, the prob-
ability of obtaining a specific set of Rf/4 data equals the product,
pðXð1Þi Þ/pðXðnÞi Þ. Consequently, the optimal strain ellipse is deter-
mined by maximizing this probability or equivalently the logarithm
of the probability. Eq. (32) denotes this logarithm. The optimal
strain is the most likely estimate for given Rf/4 data.
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